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Abstract-It is shown that wall effects may significantly alter heat flow through heterogeneous material. 
These effects can be accurately modelled using the concept of the apparent wall heat transfer coefficient GI,. 
A method for exact evaluation of c(, is proposed and is used/p ies$@g of the ad hoc formulae available 
in literature. The formula proposed by Kubie (1987) gives the smalle$ errors and is recommended for use 

in simplified heat transfer calculations. 

1. INTRODUCTION 

CHARACTERIZATION of properties of various kinds 

of heterogeneous materials (porous, granular, sus- 
pensions, composites) is very important due to their 
frequent use in many areas of engineering. One of 
possible methods is to model these materials macro- 
scopically by assuming that they behave as a con- 
tinuum characterized by certain effective properties. 
Determination of the effective properties attracted 
interest of many investigators and is still the subject 
of numerous experimental as well as theoretical 
studies [l, 21. 

The macroscopic continuum description of heat 
conduction in heterogeneous media. in general, has 
relations similar to those valid for homogeneous 
media. Certain special effects, such as, for example, 
nonlocal and memory type behaviour and boundary 
(wall) effects still remain to be accounted for [3]. While 
the first two effects are in most instances negligible, 
the last one can be important even for slow spatially 
and temporilly varying processes. This can be easily 
seen in the available experimental data dealing with 
heat transfer in stagnant beds of solid particles [2, 41. 
Measured temperature distribution shows an abrupt 
change of temperature taking place in the immediate 
vicinity of the wall. The temperature change propa- 
gates usually no more than one particle diameter into 
the bed and its appearance is attributed to the 
increased voidage of the medium in the neigh- 
bourhood of the wall ; it can affect the whole bed in 
the case of sufficiently narrow beds [S]. In most cases 
of practical interest the wall effects result in the 
reduction of the heat flow, which is accounted for by 
assigning an additional thermal resistance to the wall 
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region of the medium. Determination of the mag- 
nitude of this resistance requires estimation of the 
local porosity in the vicinity of the wall. The available 
experimental results show that the porosity decreases 
with distance away from the wall, but the character 
of the decrease depends on the shape of the particles 
in the bed. In the case of beds made of regular, equi- 
dimensional particles, the porosity decreases in a 
damped oscillatory manner, while in the case of highly 
irregular particles it decreases monotonically [6, 71. 

The wall effects are also present in other types of 
heterogeneous materials, such as, for example, com- 
posites or porous materials. The role of these effects 
may be especially important in heat conduction 
through thin layers, which are frequently utilized in 
experimental measurements of the effective thermal 
conductivity. 

The inverse of the thermal resistance at the wall is 
related to the so-called apparent wall heat transfer 
coefficient, x$,. (apparent wall---film coefficient of heat 
transfer or wall-film coefficient of heat transfer). The 
available experimental data give large scatter of values 
of a,, mainly due to inaccuracy of temperature 
measurements [2, 81. Since no general theory is avail- 
able that could help in rigourously predicting the cor- 
rect value of c(,., one has to rely either on experimental 
estimates or on theoretical calculations based on 
greatly simplified models of unknown accuracy. 

The main objective of the present analysis is direct 
evaluation of the apparent wall heat transfer 
coefficient a,.. Since it is of interest to correlate a,, with 
the internal structure of the material, a model of a 
two-component heterogeneous material consisting of 
a matrix with randomly distributed small volume frac- 

?? tion spheroidal inclusions is adopted. This model per- 
mits investigation of the dependence of a,. on the size 
of the inclusions (particles), their shapes, orientation 
and volume fraction, and on the ratio of thermal con- 
ductivities of the matrix and the particles. Such a 
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NOMENCLATURE 

.d configuration of the particles 
A, (A,) surface area of thejth particle (the 

reference particle) 
tensor defined by equation (13) 
x,,dli,j”, nondimensional apparent 
wall heat transfer coefficient 

coefficients (vector and tensor) in 
the linear representation of @ in 
equation (18) 
length related to the particle dimension 
distance defined below equation (29) 
and shown in Fig. 3 
vector function defined in equation (20) 
Green’s function 
Green’s function for infinite medium 
Heavyside step function 
tensor defined by equation (23) 
particle length 
unit vector normal to the surface 
pointing outwards 
number of particles per unit volume 

P(f’ (7, E, R) the one particle distribution 
function defined by equation (29) 

P shape tensor defined by equation (20) 
P;“, Q; associated Legendre functions of 

the first and second kind, 
respectively 

4.40 components of heat flux vector in the 
direction perpendicular to the walls for 
e heterogeneous material and for the 
pure matrix, respectively 

R particle radius 

RI thermal resistance 
r?, vector describing position of the centre 

of the reference particle 
i;’ = fs’. j”, z’) vector describing position of 

the reference particle 
vector connecting centre of the 
reference particle with centre of its image 
area of the cross-section of a particle, 
defined by equation (3 1) 
temperature 
temperature of the wall 
extrapolated temperature at the wall 
(Fig. 2) 
position vectors originating in the 
centre of the,jth particle 
position vectors originating in the 
centre of the reference particle. 
u = (u,. u2, ~4 (Fig. 3) 
position vectors associated with the 
image of the reference particle 

(a,, iiz, z&) local Cartesian coordinate system 
with origin in the reference particle and 
with z& directed along the particle axis 
of symmetry (Fig. 3) 

position vectors, 1 = (x, J’, z), 
!’ = (X, j’, z) 
local volume fraction of the particles, 
1’ = {0} 
volume fraction of the particles in the 
interior of the slab of heterogeneous 
material 
volume fraction defined by equation 

(6) 
volume fraction of the particles far 
away from the wall 
mean volume fraction of the particles 
defined below equation (30). 

Greek symbols 

T, 
b 
A 

apparent wall heat transfer coefficient 
Dirac delta function 
thickness of the slab of heterogeneous 
material 

c 

‘i 

1-,,... 
q. :$. d, 

particle aspect ratio, F = L/(2R) 
angle between the particle axis of 
symmetry and the z-axis (Fig. 3) 
rh functions defined in the Appendix 

curvilinear, spheroidal coordinate 
system attached to the centre of the 
reference particle 
value of the coordinate q in the 
curvilinear, spheroidal system 
corresponding to the surface of the 
reference particle 
characteristic function, equation (12) 
effective thermal conductivity tensor 
component of 1, in the direction 
perpendicular to the wall 
-1 . 
I.<,, for an mhmte domain 

particle (matrix) thermal 
conductivity, iL; = i., -i, 
i.,/&, relative thermal conductivity, 
0’ = R,/l,- 1 

cl*b = 

microstructure function 
vector describing orientation of the 
particle axis of symmetry 
volume and surface of the medium 
ensemble average 
(vector) nabla operator 
tl scalar product of vectors (7 and 6 
c scalar product of second-order 
tensor 71 and vector 6 
? scalar product of second-order 
tensors U and b 
7 affine product of vectors d and 6 a.J= 

a. 5 * ir = d quadratic form (double scalar 
product of vector d and second- 
order tensor h). 
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FIG. I. Typical temperature and volume fraction profiles in 
a slab of finite thickness made of heterogeneous material. 

model well approximates a wide class of materials 
used in engineering practice. Results are presented in 
the form of graphs that could be subsequently used 
for simplified heat transfer calculations involving het- 
erogeneous materials. The same results are used for 
assessing the validity of the simplified formulae for E,, 
available in the literature. Thus, the present analysis 
provides a firm theoretical justification of the concept 
of the apparent wall heat transfer coefficient and its 
practical utilization. 

This paper is organized as follows. Section 2 pro- 
vides description of the apparent wall heat transfer 
coefficient PLY, and two simplified models used for its 
prediction. Section 3 describes a method for evalu- 
ation of the local value of the effective thermal con- 
ductivity of a heterogeneous material. This infor- 
mation is used in Section 4 for direct evaluation of x,, 
Description of the functional dependence of x,, on 
various structural parameters characterizing hetero- 
geneous material is given in the same section. Sec- 
tion 5 compares direct evaluation of heat transport 
through a heterogeneous material with an approxi- 
mate evaluation utilizing x,~. Section 6 gives a short 
summary of the main conclusions. 

2. THE APPARENT WALL HEAT TRANSFER 

COEFFICIENT 

A typical, experimentally observable [X] tem- 
perature distribution in a layer of heterogeneous 
material exposed to constant temperatures at the 
opposite walls is shown in Fig. 1. The temperature 
distribution can be qualitatively divided into a cot-c 
region, characterized by linearly varying temperature. 
and two wall layers. Volume fraction of the particles 
is constant in the core region, and it decreases across 
the wall layers to reach zero at the walls. The linear 
temperature in the core region can be extrapolated to’ 
the walls giving rise to the extrapolated wall tem- 
peratures T:, , , Tf,,, which are different from the real 
wall temperatures r,, , , T,,?. 

FIG. 2 Distributions of temperature T. cfTccti\e thermal 
cvnductl\it> T,‘! and volume fraction I of the particlea neat 

the wall hounding heterogeneous material. 

1, ! 9 

described b;the apparent hali heat transfer coefficient 
x,, defined as [8] 

z,, = - (4’fi)i(T,, -K), (la) 

where (7 and ri are the heat flux vector and the unit 
vector normal to the wall directed outwards, respec- 
tively. The available experimental results [2, 5, 81, as 
well as this study, show that x,, is positive when ther- 
mal conductivity of the particles I, is larger than con- 
ductivity of the matrix i,. Coefficient r,,. can take nega- 
tive values if i,, < i.,. Such values were measured for 
packed beds [8] and were found in the present study 
for most of particle shapes. Temperature distributions 
for positive and negative r,, are shown qualitatively in 
Fig. 1. 

A simplified calculation of heat how by conduction 
through heterogeneous material involves summation 
of three thermal resistances connected in series (two 
related to the wall etfects and one associated with the 
thickness A of the layer of the material, Fig. 1). The 
expression for the heat flux takes the form 

(1 = (r,,, -r,,,)‘R,, R, = l/a,,+A!i$,’ +1)x,,. 

(lb) 

where R, is the total thermal resistance and &‘ is the 
effective thermal conductivity of the medium in the 
core zone. This approach is very attractive for prac- 
tical (design) calculations due to its simplicity, but its 
accuracy critically depends on the accurate deter- 
mination of r,,. 

Coefficient x,, can be evaluated by calculating the 
heat flux directly (taking into account structure of the 
material) and comparing the resulting expression with 
equation (1 b). 

In order to simplify the algebra. we shall consider 
only a single wall layer as shown in Fig. 2. The effective 
thermal conductivity of the material is a function of 
the distance away from the wall and approaches a 
constant value of L$” at z * #KI (where temperature 
T, changes linearly). Similarly, the volume fraction 
of the particles changes from r = 0 at the wall to 

Heat transfer process in the wall layers can be 1’ = L’, = const at z = cc 
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Heat flux, q, flowing through the material in the 
direction normal to the wall may be calculated by 
integrating the Fourier equation and taking advan- 
tage of the fact that q is constant within the medium. 
The resulting expression has the form 

(2) 

If one assumes that the medium has the same effec- 
tive thermal conductivity ,$$m everywhere, then a simi- 
lar derivation leads to the formula 

Elimination of T, between equations (2) and (3), 
and substitution of the resulting expression into the 
definition of the apparent wall heat transfer 
coefficient, equation (l), leads to a direct relation 
between X~ and the effective thermal conductivity. The 
appropriate dimensionless formula has the form 

where d is a reference length scale describing the size 
of the particles. 

Formula (4) is of no use unless distribution of 
/2$(z) in the vicinity of the wall is known. While 
theories permitting evaluation of Aim far away from 
the wall (infinite medium approximation [9]) have 
been available-r quite some time, a method for deter- 
mination of variations of A;(z) in the vicinity of the 
wall has been proposed only very recently [lo]. 
Because of that two ad hoc type approximations for 
the distribution of A+(z) have been used in literature. 
In the first it was assumed that [8] 

l,:(Z) = $%L) forz < d/2 
l$a(u,‘) forz > d/2, (5) 

where A$“(uu.) was determined from the expression 
for the effective thermal conductivity in the infinite 
medium evaluated for the volume fraction v, charac- 
terizing distribution of the particles in the vicinity of 
the wall. Quantity v, was defined as the average vol- 
ume fraction in a layer adjacent to the wall whose 
thickness was one-half particle size, i.e. 

d, 2 
L’,, = 

s 
U(Z) dz/(d/2). (6) 

II 

The corresponding expression for Bi is 

a Bi = 2/[&r(v,)/~~“(~w) - 11. (7) 

In the second approximation 1$(z) was assumed to 
vary according to the formula [ 1] 

agz) = V@) forz < d 
A$ (u,) for z > d (8) 

FIG. 3. Characteristic quantities used for analysis of 
ations of the effective thermal conductivity of the 

erogeneous material near the wall. 

vari- 
het- 

in which @(u) represents the expression describing 
effective thermal conductivity in the infinite medium, 
with u, replaced by the local value of the volume 
fraction u(z) determined by simplified geometrical 
considerations [ 111. The corresponding expression for 
Bi is 

= d 
:‘I 

= [~~a;(v,)/rl~~(u) - 1] dz. (9) 
0 

While the accuracy of both approximations discussed 
above is not known, these expressions are nevertheless 
widely used because of a lack of viable alternatives. 

The ad hoc character of the existing models necessi- 
tates careful analysis of the heat transfer process in 
the vicinity of the wall. We begin this analysis in the 
next section by describing a theory permitting deter- 
mination of the actual distribution of 1$(z) in the 
neighbourhood of the wall. We shall limit our analysis 
to dilute (small volume fraction) materials only. 

3. DETERMINATION OF THE EFFECTIVE 
THERMAL CONDUCTIVITY NEAR THE WALL 

The effective medium theory based on the ensemble 
averaging concepts is used to determine the effective 
thermal conductivity of a heterogeneous medium [3]. 
The ensemble averaging procedures are more pow- 
ful than the volume averaging because they are appli- 
cable to problems which lack spatial stationarity (in 
statistical sense), as in the present problem. 

Let us consider a half-space made of a hetero- 
geneous material with a wall located at z = 0 (Fig. 
3). The material consists of a matrix with randomly 
distributed axisymmetric particles. The particles have 
spheroidal shape with length L and radius R so that 
their aspect ratio is E = L/(2R). By varying the particle 
aspect ratio different shapes of the particles may be 
obtained ranging from flattened disc-like particles 
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(ablate spheroids with c < 1) through spheres cc: = 1) 
to elongated rod-like particles (prolate spheroids with 
E > I). All the particles have the same orientation (7) 
which is described by the orientation angle ;‘. The 
angle y is formed between the particle axis of sym- 
metry and the positive direction of the z-axis (Fig. 3). 
All particles have the same thermal conductivity i.,, 
while the matrix has thermal conductivity 1,. Both 
conductivities are assumed to be independent of tem- 
perature. It is further assumed that the number of the 
particles, as defined by their mean volume fraction L’, 
is small so their direct interactions are negligible (small 
volume fraction assumption). 

Let us assume that the microstructure length scale 
/ (associated with the variations of the thermal 
properties of the heterogeneous material) is much 
shorter than the smallest of macroscopic length scales 
Y characterizing changes of the average temperature 
of the material. Then the effective thermal. con- 
ductivity tensor I?, may be expressed in terms of the 
so-called microstructure function @ by the formula [3] 

Z,,(X) = &i+j-‘, {0( K)Vg(X)J, (10) 

where i and tl are respectively the unit second-order 
tensor and the characteristic function. The braces 
({ * }) represent the ensemble averaging over all poss- 
ible configuration .d of the particles (i.e. all possible 
locations, orientations, shapes and dimensions of the 
particles). The characteristic function B assumes the 
value of unity for x in the interior of a particle and 
the value zero otherwise. The microstructure function 
g satisfies the following integrodifferential equation 

131: 

* [O(J / ~)OQ(J I cd) - [O(J)~~I(J)}] dQ (11) 

where I_‘, = i,, -i, and the integration is carried out 
over the whole volume Q occupied by the het- 
erogeneous material. 

The analytical expression for the characteristic 
function 0 for the material made of particles dis- 
tributed in a matrix can be written as 

61bl.d) = 2 @,(_fId) = -f H[l-22;A.&], 
,= 1 ,= I 

(12) 

where z?, = .Y-F,, N is the number of particles in the 
material, H denotes the Heavyside step function and 
r, is a position vector describing location of the centre 
of the jth particle. The tensor 2 accounts for the 
spheroidal shape of the particles and has the form 

A ZZ R-2T+R-2(E-‘-l)aai, (13) _ 

uted. One of them is arbitrarily selected to play the 
role of a reference particle. This particle is denoted by 
suffix I and has a local coordinate system attached to 
its centrc (located at a’) with a, = a = .r-_p’. Equation 
(12) may be utilized to transform equation (I I) into 

where A, is the surface of thejth particle and rt denotes 
the normal vector external to this surface. The first 
two tevys pn.the left-hand side of equation (14) refer 
to the referenGe particle and the third term describes 
influence of the neighbouring particles on the micro- 
structure function Q. The right-hand side of the above 
equation, being the ensemble averaged, is independent 
of any particular configuration (distribution) of the 
particles. 

The Green’s function G(a, 6) appearing in equation 
(14) satisfies the following equations 

&~*G(&I?)+~(~,c) = 0 forz > 0 (1% 

G(a,c) = 0, z = 0. (16) 

The function G(a, C) may bc constructed from the 
infinite Green’s function G, (a, 0) by taking advantage 
of the method of reflections [12], i.e. 

G(a,ii) = G.(n,P)-G.(a*,1?*;2?). (17) 

where ZJ* and P* are the position vectors whose origins 
are located at the centre of the (reflected) image of the 
reference particle located at a distance I’ away from 
the wall (Fig. 3). This particular construction of 
the Green’s function G(zz, 0) simplifies calculations 
because it allows the use of systems of coordinates 
that permit simple modelling of geometry of the par- 
ticles. In the present study, interest is focused on the 
spherical and prolate and oblate spheroidal particles 
which leads to the use of spherical and prolate and 
oblate spheroidal systems of coordinates. 

In order to find the effective thermal conductivity 
from equation (10) the microstructure function in the 
interior of the particle is needed (the characteristic 
function H vanishes outside the particle). The simplest, 
acceptable form of the microstructure function Q is 
linear, i.e. 

(7(Ul.V1) = C”(.o/) + c, (&). a (18) 

and it leads to the effective thermal conductivity tensor 
in the form 

I,<,,(X) = T+fJ! {OF,}. (19) 

where (7, is the vector describing orientation of the The vector c,, and the second-order tensor ?‘, in the 
particle (Fig. 3). The particles are considered to be above expressions depend on a particular distribution 
indistinguishable because they have the same size and of the particles in the medium. Use of equation (19) 
orientation and because they are randomly distrib- requires determination of C,. This can be done by 
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substituting the gradient of the microstructure function 
(20) and expression (19) for the Green’s function into 
equation (14) and dropping the third term on the left- 
hand side ofequation (14). The omitted termdescribes 
the influence of the neighbouring particles on the micro- 
structure function in the reference particle and is neg- 
ligible due to the small volume fraction aSSUmPtiOn. 
The resulting expression contains integrals of the type 

r 
G, (a, i’)fi dA, 

-1 

__, P-a 
= /.(I 

i 

for points zi inside particle 

Pan for points ti outside particle, (20) 

where the tensor P depends only on the shape of the 
particles. Components of 7 and ,r are given in the 
Appendix for different classes of shapes. Function 
T(a*) describes contributions of the reflected image of 
the reference particle, with a* denoting the position 
vector attached to the centre of this image. This func- 
tion can be replaced around the centre of the reference 
particle by a linear approximation of the form 

.f’(a’*) =J’(P*+a) =f(r*)+Yf( r*)*17+... , (21) 

where ZI is the position vector attached to the centre 
of the reference particle (Fig. 3). Introduction of equa- 
tion (21) into the latest form of equation (14) and 
matching the terms of the same order in a leads to a 
system of two equations for the unknowns c0 and ?‘, 
After carrying out derivations described in detail by 
Furmanski and Floryan [lo], c, can be expressed in 
the form_ ~ 

C,(;%!) = [1+~‘P.(I--)]~‘.[I-(Tje[P’(l-_)] 

.[i+o’~*(~-K)] -‘I] ‘, (22) 

where 

z= 07‘(r*). (r’= m-1 = ?. &-I. (23) 

Substitution of express@ for c,(.uI) into equation 
I 19) leads to the final formula for the effective thermal 
conductivity 

;<,,(.V))/i” = 1+a,is[1+a,P.(i-k)]~’ 

.[r-,,(u[p.(~_K)].[i+a’~.(i-K)]-’j]~’. 

(24) 

In practical applications, it is the component of the 
uffcctive thermal conductivity in the direction per- 
pendicular to the wall I.$ that is of interest. Its deter- 
mination is laborious because the principal directions 
of tensors P and k do not in general match. After 
carrying out the necessary transformations the 
expres&m for L<‘, becomes 

2,; (z)/i,, = 

0’[{W,}(l -~‘(Or?})-o’i(Hri1(8r~)] 

l+(;-o,:er,))(l-o’lor,})-(~‘)‘(er.,}jnr,,’ 
(25) 

where functions r,, , r6 are given in the Appendix. 
One may note that, when z => a, n$ approaches a 
constant value given by the expression 

~.~;l’i& = 1 i-g/r>, [(l +U’P,,)-’ sin’ ;l/ 

[l-a’c,P,,(l+a’P,,) -‘]+(l+rr’P,?)~‘cos’:J! 

[l --‘t’,P1q(I +o’P??)-‘I. (26) 

Effective application of the formula (25) requires 
evaluation of the ensemble averages of the type 

(27) 

where p(.ti) is the probability density function associ- 
ated with a particular configuration .d of the particles. 
It is convenient to express the above average in the 
form [IO] 

x r,(np 11 , ,,E, R)j*p(Y,y,E,R)dr’, (28) 

where {or,}* is the conditional ensemble average 
with the centre of the reference particle (of specified 
dimensions and orientation) located at point ?’ and 
~(r’. y. c, R) is the density probability function associ- 
ated with this reference particle. Functionp(Y, y, c, R) 
is known as the ‘one-particle distribution function’. 
In the present case we assume that the particle pos- 
itions are totally random away from the walls and are 
strongly influenced by the walls in their vicinity (due 
to geometrical constraints). The one-particle dis- 
tribution function may then be approximated by the 
formula 

P(P’ , i’, B, R) = R- ’ H(z’- D,,,) (29) 

where D,,, = R[(R’- 1) cos* y+ I]“* denotes the mini- 
mum permissible distance between the center of the 
reference particle and the wall (Fig. 3). If expressions 
(12) and (29) are introduced into the definition (28), 
and advantage is taken of the facts that the particles 
are indistinguishable and the functions rk are inde- 
pendent of the coordinates x,y as well as x’,~‘, 
the formula (29) for the ensemble average may be 
expressed as 

H(z’ -&) d? (30) 

In the above, P? is the particle number concentration 
(i.e. number of particles per unit volume) which is 
related to the mean particle volume fraction B by the 
expression +Y = 3fi/(4nLR2). The symbol Y denotes 
an area of the cross-sgftion of the reference particle 
bisected by a plane parallel to the wall and located at 



Heat conduction through a heterogeneous material 1951 

ld Bi > 0 

lo.’ I I I : , I , 1 

104 10-3 KY2 lo-’ 1 10 ld ld lad 
u 

FIG. 4. Varlatlon of the dimensionless wall heat transfer 
cocficicnt Bi = 2 TD r1.t ’ /I- ,n/ 6, as a functmn of the relative con- 
ductiblty CT and the mean \oiumr fraction i; of spherical 

particles (c = I). 

a distance z away from it. This arca can be calculated 
from the following formula 

.Y(z,z’,Y,s,R) = nR’&[D~,-(z-z’)2]/D,‘,. (31) 

4. EVALUATION OF THE APPARENT WALL 
HEAT TRANSFER COEFFICIENT 

The dimensionless wall heat transfer coefficient Bi 
was calculated directly from equation (4) by making 
USC of the effective thermal conductivity distribution 
i,;,(z) given by equation (25) and the effective thermal 
conductivity ;.A’ for the infinite medium described by 
formula (26). Results of calculations are shown in 
Figs. 4-8. 

The wall heat transfer coeficient z,, depends on 
many factors including the sire d, the class of shapes, 
the aspect ratio B and the volume fraction t‘, of the 

10-Z 1 
I 

’ ’ ’ ’ ’ ’ ’ ’ 
104 10-S lo-2 lo-1 1 10 ld 103 10’ - 

Particles, and on the ratio D of the thermal con- 
ductivities of the particles and the matrix. The most 
consise presentation of the results is achieved by 
adopting the length scale d = 20,,, in the definition of 
Bi [equation (4)]. where D,,, is defined below equation 
(29). One should keep in mind during the following 
discussion that the wall effects become stronger when 
I Bil becomes smaller. 

The relative thermal conductivity c of the particles 
is the most important factor affecting Bi. A typical 

plot of Bi vs CT is shown in Fig. 4 for the spherical 
particles. Bi is positive (and has smaller absolute 
values) for m > 1 and is negative for o < 1. When 
0 3 I, 1 Bil a x which corresponds to disappearance 
of the wall layers. For o > 100 (or c < 0.01) Bi 
assumes constant asymptotic values. These results are 
conpistept$&h the experimental observations of Ofu- 
chi and Kuni [8] and Melanson and Dixon [5]. 

The second most important factor affecting r,, is 
the shape of the particles as modelled by the aspect 
ratio E (Figs. 5 and 6). The role of this factor is 
especially pronounced for (r > 1. In general, the less 
spherical the particles become, the smaller the value 
of Bi. The magnitude of Bi is sensitive to the orien- 
tation of the particles. These effects are greater for the 
rod-like particles (Fig. 7) where an increase in 1~ results 
in an increase of Bi. The opposite is true for the disc- 
like particles, Some anomalies in this behaviour are 
observed when particles are parallel to the wall. i.e. 
^’ _ 0 for the disk-like particles and ;’ _Y 90 for the 
iod-like particles (but only for those that are sub- 
stantially elongated and have a thermal conductivity 
smaller than the conductivity of the matrix, Fig. 7b). 

An increase of the volume fraction of the particles 
far away from the wall causes the absolute value of 
the wall heat transfer coetficient to decrease. This 
decrease is of the order of several percent for 1’, , 
increasing from 0.05 to 0.33 (Figs. 4 and 6). 

The validity of the approximate formulae for Bi 
cited in the literature has been tested by comparing 

FIG. 5. Varlatlon of the dimensionless wall heat transfer coefficient Bi = r,,20,,,/1.$’ as a function of the 
particle relative conductivity CJ and the the aspect ratio F: (A) rod-like particles (7 = 0 ,), (B) disc-like 

particles (: = 90 ). 
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FIG. 6. Variation of the dimensionless wall heat transfer coefficient Bi = a,20,,/1$” as a function of the 
particle mean volume fraction c” and the aspect ratio B : (A) (T = m, (B) e = 0. 7 = 0. for the rod-like 

particles (E > I), ;’ = 90 for the disc-like particles (F < 1). 

c = l/S (disk) 

c = 5 (rod) 

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 Pa 
r Y [“I Y [“I 

FIG. 7. Variation of the dimensionless wall heat transfer coefficient Bi = c(,.2D,,/I$” as a function of the 
particle orientation angle ‘/ and the aspect ratio F : (A) e = 100 ; (B) 0 = 0.01 ; --~ exact formula, equa- 

tion (4); approximate formula, equation (9). 

values of Bis obtained from equations (7) and (9) 
with the exact solution obtained from equation (4). 
In general, these formulae give the correct dependence 
of Bi on different parameters and values that are simi- 
lar to those obtained from equation (4) (Figs. 7 and 8). 
The agreement is better for the nonspherical particles 
with E much different from unity. In most cases equa- 
tion (9) leads to a better agreement with the exact 
solution and is, therefore, recommended for use when 
quick estimates of Bi are required. 

% 

5. HEAT FLOW THROUGH A SLAB OF 

HETEROGENEOUS MATERIAL OF FINITE 
THICKNESS 

As noted in Section 1, the concept of the wall heat 
transfer coefficient CL,. has been introduced in order to 

simplify determination of the heat flow in het- 
erogeneous media. The applicability of this concept 
will now be demonstrated by calculating heat flux 
flowing through a slab of heterogeneous material 
using equation (1 b) and comparing these results with 
the direct solution of the same problem using m&od 
described by Furmanski and Floryan [lo]. 

Equation (1 b) has to be rearranged for the purpose 
of calculations. The appropriate substitutions lead to 
the formula 

~:mbJl& 
“” = I+ 2(d/A)/Bi(v,)’ (32) 

where q. is the heat flux through the slab made of a 
pure matrix material md v, represents the volume 
fraction of the particles in the interior of the slab (in 
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FIG. 8. Variation of the dimensionless wall heat transfer coefficient Bi = a,ZD,/I,;” as a function of 
the particle mean volume fraction d and the aspect ratio E/det$r&ned using different methods : (A) CT = 
100; (B) rr=O.Ol; ~~ exact formula, equation (4); --- Spproximate formula, equation (7): 

-- approximate formula. equation (9). 

the core region away from the walls). For very thick 
slabs, v, is practically equal to the mean volume frac- 
tion 6, which is also equal to v,, and thus v, = v, = b 
in equation (32). This case is easiest to deal with 
because B is known a priori. In the case of thin slabs, 
volume fraction in the middle of the slab v, is usually 
much greater than 6 (Fig. 1) and has to be calculated 
for a given distribution of the particles. For the med- 
ium consisting of dilute, randomly distributed sphe- 
roidal particles (analysed in this paper) this relation 
can be readily obtained by substituting rk = 1 in equa- 
tion (30) and taking account of the finite thickness of 
the slab, i.e. 

L’,, = 323/(41rLR’) 

I5 

X s Y(z = A/2, z’, i’, 
0 

c.R)H[I-y] 

x (H[z’-D,,,]-H[z’-(A-D,)])dz’. (33) 

When 20, is adopted as the reference length scale d, 
the relation between v, and v” becomes independent of 
the particle shape, its aspect ratio and its orientation. 
The functional form of this relation is displayed in 
Fig. 9 and shows that the value of v, approaches ir 
for thickness of the slab equal to about 100 particle 
lengths. For narrow slabs, i.e. for small values of A/d, 
the value of v, may differ by a factor of up to &XI 
from the mean volume fraction 0. 

Analysis of equation (32) reveals the presence of 
two competing effects arising due to the presence of 
walls that may lead either to a decrease or to an 
increase of the overall heat flux. The first effect is 
obvious, i.e. it is associated with the appearance of 
the additional wall resistance ; it increases q for Bi < 8 
and it decreases q for Bi > 0. The second effect is more 
subtle and it has to do with the change of &!,m in the 
core region (due to an increase of u,). This effect can 
be significant in the case of thin slabs where it can 

compensate for the increased resistance of the wall 
layers. The cumulative effect in such slabs cannot be 
predicted a priori and requires detailed calculations. 

The results obtained using direct and approximate 
methods are shown in Figs. 10 and 11. Figure 10 
presents dependence of the dimensionless heat flux 
q/q,, on the ratio of slab thickness to particle size 
A/(2Dm) for the spherical particles. The smaller the 
thickness of the layer relative to the particle size, the 
greater the reduction of the heat flux due to the wall 
effects. This reduction is predicted by formula (32) 
with accuracy sufficient for practical applications 
beginning with a layer of thickness equal to twice the 
particle size. A good agreement exists also in the case 
of nonspherical particles, even for thin layers (thick- 
ness of the order of a few particle dimensions) and 
various particle aspect ratios E and relative thermal 
conductivities ~7 (Fig. 11). It appears that formula (32) 
may produce an error of practical importance only in 
the case of thin layers with highly flattened disc-like 
particles that have 0 CC 1 and are parallel to the wall. 

3.0 

2.5 
F 

FIG. 9. Relation between the volume fraction v,,, in the core 
region and the mean volume fraction 6 of the particles as a 

function of the relative thickness A/(20,) of the layer. 
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FIG. 10. Variation of the heat flux q/q0 as a function of 
the relative thickness A/(20,,) of the layer of heterogeneous 
material : __ exact solution [lo] ; --- - approximate solu- 
tion, equation (32); ~~~ asymptotic values for 

A/(20,,,) =a m. 

Figure 12 shows distribution of 1; as a function of 
distance away from the wall for this particular case. 
It can be seen that the wall layers are sufficiently 
thick to interact among themselves and to prevent 
formation of the core region. Formula (32) ceases to 
be valid under such circumstances. 

6. SUMMARY 

It is demqstrated that wall effects may significantly 
alter the heat flow through heterogeneous material. 
These effects can be accurately modelled using the 
concept of the apparent wall heat transfer coefficient 
r,,. A method for evaluation of CL,, from the known 
distribution of the effective thermal conductivity A+ 
in the case of a material made of a matrix with ran- 
domly distributed spheroidal particles is proposed. 

The wall heat transfer coefficient SI,, may assume 

lo (A) 1 

AM2D,) = 3 

1 ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 10 20 30 40 50 60 70 80 90 

Y [“I 

u = 0.01 v, = 0.01 

I I I I 
0 1 2 3 4 

N.&l) 

FIG. 12. Variation of the dimensionless effective thermal 
conductivity L$/:ii.$” as a function of distance z from the wall 
and the aspect ratio E for the relative conductivity CT = 0.0 I. 

both positive and negative values, in agreement with 
the available experimental measurements. The wall 
effects become stronger for the lower absolute values 
of the dimensionless heat transfer coefficient ]Bi]. 
Smaller values of ]Bi] are obtained by using material 
consisting of particles and matrix of widely different 
thermal conductivities, increasing particle volume 
fraction away from the wall, using more deformed 
particles (more elongated for the rod-like particles and 
more flattened for the disc-like particles) and orienting 
the particles perpendicularly to the wall (y = 0 for 
a> landy=90”for.s< 1). 

The approximate formulae proposed previously for 
evaluation of the wall heat transfer coefficient give 
values of the correct order of magnitude for almost 
all factors influencing rW. The formula proposed by 
Kubie [1] gives values of c(, closest to the exact ones 
and, therefore, is recommended for use in design cal- 
culations even for materials with highly deformed par- 
ticles and widely varying particle properties. 

’ G-9 r 

FIG. I I Variation of the heat flux q/q0 as a function of the particle orientation%gle y and aspect ratio F : 
(A) 0 = 100; (B) 0 = 0.01 ; ~ exact solution [IO] : --- approximate solution, equation (32). 
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The concept of the wall heat transfer coefficient can 
be used for calculations of the heat flux beginning 
with layers of thickness exceeding twice the particle 
dimension. The predicted heat flux agrees very well 
with the exact solution. The only exception is the 
case of narrow layers with highly flattened disc-like 
particles which have o CC 1 and are parallel to the wall, 
where the concept of wall heat transfer coefficient 
ceases to be valid. 
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APPENDIX 

The components of tensor ? and vectorfmay be obtained 
directly by introducing the infinite Green’s function G, 
expressed m the curvilinearcoordmate system (a. 3,$~). con- 
sistent with the part{& shape. into the left-hand side of 
equation (19) and carrying out integration over the angles 3 
and 4. 

The results are as follows : 
(i) for the spherical particles : 

P,, =P>?=; (Ai) 

f; = -RR’/#sin3cos4. 
12 = -R’/$sin3sin@. 
f, = - R’,‘$ cos 9. (AZ) 

(ii) for the rod-like particles : 

P, I = PI: = ~ Q I (cash qn) sinh qn cash k!n 2. 

Pli = Qy(cosh qR) sinh2 qn (A3) 

.fl = [PI (cash qR)/Q 1 (cash qR)nQ I (cash q) sin 3 cos & 

1~ = [P 1 (cash qH)/Q i (cash qR)crQ 1 (cash 7) sin 3 sin 4 

f; = [P’;(cosh tl,<) ‘Q:(cosh q&Q:(cosh tl) co> :j (A41 

where a = [(L/2)‘- R*]’ ’ and cash qK = LI.(E~ ~ I)’ ‘. 
(iii) for the disc-like particles : 

r.4 
’ 1 P,‘; =‘P2? = -Q f (i sinh qK) sinh ~1~ cash ~~12. 

“Pi? = Q:(i sinhq,<) sinh’ un (.45) 

1, = (P~(isinhq,)/Q~(ismh~,)aQ~(isinh~)sin9cos~ 

,jz = [Pi (i sinh qK)/Q i (i sinh q&Q 1 (i sinh q) sin 9 sin 4 

.f; = [f’:(isinh~,),QC(isinhrl,)crQ:(isinhq)coa,~ (.46) 

where a = [R*-(L/2)2]’ 2, sinhq, = l/(1 -+?)I ’ and i is the 
imaginary unit. 

Functions Tr appearing in equation (26) may be expressed 
in the following form : 

I-, = (I +a’u,,)/iV, 

r2 =[~,,(I+u’I’,,)~n’c’,;C’,,]:~. 

l-7 = o’Ui,,/W, 

r4 = u,+v, 

rr = [(/,,(l+u’U,,)-n’CI,,~~,l/w, 
rh = U,,IW, (A7) 

w= (l+cr’c!,,)(I-tcr’Ii,,)-(a’)~u,~Cil, (A8) 

where 

U, , = V, co? y + Vz sin’ 7 + V, sm ~~08 ;‘, 

U, , = V, cos’ ;’ - V, sin’ ;‘+ V, sin ;’ cos ;‘. 

U; , = V, co? ;‘- V4 sin’ :’ + V, sin 7~ cos y. 

C’, i = L’: ~0s’ ;’ i V, sin? ;’ If1 sin ;’ cos ;’ C-49) 

and 

v, = P,,(1+&,)> vz = P,,(l +&X)5 

c’; = P,IKI,+P,K,,. v~ = PI,&, 

Vj = P,X,,, v,,= ~P,,(1+K,,)+P?1(1+K,1). 

(AlO) 

In the above formulae, P, = PJ2 and P,, are the prlnclpal 

components of the tensor P defined by equations (Al). (A3) 

and (As). respectively. and K,, are the components of the 
tensor K [equation (23)] expressed in the coordinate system 
(li,,&,G,) (Fig. 3). 


